Agmatine blocked voltage-gated calcium channel in cultured rat hippocampal neurons.
نویسندگان
چکیده
AIM To investigate the mechanism of agmatine by observing the effect of agmatine on the voltage-gated channels in rat hippocampal neurons. METHODS The whole-cell patch recording technique was performed to record the voltage-gated potassium, sodium, and calcium currents in cultured rat hippocampus. Agmatine was applied directly to the single neuron using a pressure injector with microtubules. RESULTS Agmatine (500 micromol/L) had no significant effect on the voltage-gated potassium and sodium channels. Agmatine reversibly blocked the voltage-gated calcium channel and the blockade was enhanced with the increasing concentration of agmatine. The inhibitory rates were 21%+/-4%, 35%+/-6%, 49%+/-6%, 67%+/-4%, 69%+/-6%, 86%+/-8%, and 87%+/- 9%, at the concentration of 0.1, 0.5, 1.0, 5.0, 10.0, 50.0, and 100 micromol/L, respectively. IC50 was (1.2+/-0.4) micromol/L. Two-way ANOVA revealed that change of membrane potential displayed a significant interaction with the blockade by agmatine. CONCLUSION Agmatine reversibly blocked the voltage-gated calcium channel in rat hippocampal neurons in a concentration- and voltage-dependent way. Agmatine might perform its physiological and pharmacological effects partially by blocking the calcium channel.
منابع مشابه
Mechanism underlying blockade of voltage-gated calcium channels by agmatine in cultured rat hippocampal neurons.
AIM To investigate whether agmatine could selectively block a given type of the voltage-gated calcium channels (VGCC) and whether related receptors are involved in the blocking effect of agmatine on VGCC. METHODS The whole-cell patch recording technique was performed to record VGCC currents in the cultured neonatal rat hippocampal neurons. RESULTS Verapamil (100 micromol/L), a selective blo...
متن کاملCharacterization of spontaneous network-driven synaptic activity in rat hippocampal slice cultures
A particular characteristic of the neonatal hippocampus is the presence of spontaneous network-driven oscillatory events, the so-called giant depolarizing potentials (GDPs). GDPs depend on the interplay between GABA and glutamate. Early in development, GABA, acting on GABAA receptors, depolarizes neuronal membranes via a Cl- efflux. Glutamate, via AMPA receptors, generates a positive feedback n...
متن کاملCharacterization of spontaneous network-driven synaptic activity in rat hippocampal slice cultures
A particular characteristic of the neonatal hippocampus is the presence of spontaneous network-driven oscillatory events, the so-called giant depolarizing potentials (GDPs). GDPs depend on the interplay between GABA and glutamate. Early in development, GABA, acting on GABAA receptors, depolarizes neuronal membranes via a Cl- efflux. Glutamate, via AMPA receptors, generates a positive feedback n...
متن کاملRole of a voltage-sensitive calcium channel blocker on inhibition of apoptosis in sensory neurons of cultured dorsal root ganglia in adult rat
Introduction: Under pathological conditions, abnormal increase in intracellular calcium concentrations is believed to induce cell death. In the present study, a voltage-sensitive calcium channel blocker (loperamide hydrochloride) was used to investigate its role in inhibition of apoptosis in sensory neurons of cultured spinal dorsal root ganglia (DRG). Methods: L5 DRG from adult rats were di...
متن کاملNimodipine inhibits AP firing in cultured hippocampal neurons predominantly due to block of voltage-dependent potassium channels.
L-type calcium channels (LTCC) are important functional elements of hippocampal neurons contributing to processes like memory formation and gene expression. Mice lacking the Ca(V)1.2 channel in hippocampal pyramidal cells exhibited defects in spatial memory (Moosmang et al. 2005) and lowered frequency of repetitive action potential (AP) firing (Lacinova et al. 2008). We tested the contribution ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Acta pharmacologica Sinica
دوره 24 8 شماره
صفحات -
تاریخ انتشار 2003